The long-term results of subthalamic nucleus stimulation for Parkinson’s disease
Takashi Agari, Tatsuya Sasaki, Aiko Shinko, Susumu Sasada, Takaaki Wakamori, Masahiro Kameda, Takao Yasuhasha, Isao Date
Department of Neurological Surgery, Okayama University Graduate School

Objectives: STN-DBS has been performed for Parkinson’s disease (PD) patients whose medication is wearing off and/or causing adverse effects. We retrospectively investigated the effects of STN-DBS in all PD patients treated at our institute.

Methods: Between 1999 and 2012, we performed STN-DBS in 224 PD patients (98 males; mean age at surgery: 64.1 years). The mean Yahr stage was 2.89/4.18 (on-medication/off-medication) and the Schwab and England scores (S&E scale) were 87.0/52.9. Postoperatively, we investigated the following parameters: Yahr stage, S&E scale, UPDRS, complications and mortality.

Results: STN-DBS has been continued in 160 patients and discontinued in four. Twenty-seven patients died and 33 were lost during follow-up. One year after surgery, the mean Yahr stage had improved to 3.08 and the mean S&E score had improved to 77.8 in the off-medication state. After 10 years, STN-DBS had improved Yahr stage and S&E scores as well as UPDRS II and UPDRS III in the off-medication state compared with preoperative data. The complication rate was 7.14% (16 cases/224 surgeries: six cases were infection, two were intracranial hemorrhage and eight were device-related problems). Median age at death during follow-up was 74 years and major cause of death was aspiration pneumonia (seven cases/33 patients).

Conclusions: The effects of STN-DBS continued in long-term follow-up. In particular, rigidity and tremor were remarkably improved over several years. Aspiration pneumonia is a major cause of death in PD patients who have undergone STN-DBS.

The value of navigated transcranial magnetic stimulation in clinical neurosurgical practice
S. Jedlicka, S. Ott, M. Krammer, C.B. Lumenta
Technical University of Munich, Germany

Objective: Avoiding postoperative motor or sensory disorder by performing preoperative speech mapping with nTMS, making awake-craniotomy unnecessary.

Material and methods: All patients with gliomas near anatomic speech areas and a planned operative resection were included in our study prospectively. The medical ethics committee permitted the study.

In most cases nTMS was performed the day prior to surgery. After acquiring the nTMS data, they were transferred to our Brainlab® workstation for surgical navigation. Each surgeon studied the data and planned the operative approach as well as a possible complete versus incomplete tumor resection.

Results: We included 14 patients in our study. Speech disorder was the leading symptom in 6 patients. One reported of seizure-like symptoms, during which he wasn’t able to talk. Surgery was performed in general anesthesia in all patients.

Speech disorder was unchanged in five of seven patients, improved in one and one was symptom-free postoperatively. A new speech deficit occurred in 1 patient resected from a left fronto-parasagittal anaplastic oligoastrocytoma (WHO III) with a postoperative left temporal bleeding. The symptoms improved by neurolinguistic therapy and were hardly detectable on discharge. Ten tumors [3 glioblastomas (WHO IV), 3 anaplastic astrocytomas (WHO III), 3 anaplastic oligoastrocytomas (WHO III) and 1 oligoastrocytoma (WHO II)] could be resected completely. Four patients had residual tumor. Two of those were glioblastomas (WHO IV) with tumor growth into eloquent brain areas temporomesial and near the basal ganglia. Histologic evaluation revealed seven glioblastomas (WHO IV), three anaplastic astrocytomas (WHO III), three anaplastic oligoastrocytomas (WHO III) and one oligoastrocytoma (WHO II).

Conclusions: For surgical resection of brain lesions near speech areas, preoperative cortical mapping with nTMS is a noninvasive, safe and reliable alternative to awake-craniotomy. Results of our study are comparable to the update literature [Wilden JA, Neurosurg focus 34 (2):E5, 2013].
Human magnetophosphene perception and EEG response to 50 and 60 Hz magnetic stimuli up to 50 mT

1,2,3Alexandre Legros, 1,2Julien Modolo, 4Daniel Goulet, 4Michel Plante, 5Martine Souques, 4François Deschamps, 4Genevieve Ostiguy, 5Jacques Lambrozo, 1,2Alex W Thomas

1Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada
2Departments of Medical Biophysics and Medical Imaging, Western University, London, ON, Canada
3School of Kinesiology, Western University, London, ON, Canada
4Hydro-Québec, Montréal, QC, Canada
5Service des Études Médicales, EDF, Paris, France
6Réseau de Transport d’ Électricité, Paris, France
alegros@lawsonimaging.ca

INTRODUCTION

In the Extremely Low Frequency (ELF) range, international guidelines on magnetic field (MF) exposure are based on acute ‘well-established effects’ on the human central nervous system, characterized by the best estimate of threshold for retinal magnetophosphene perception [1,2]. Magnetophosphenes are described as ‘flickering-light’s perceived in a dark environment when exposed to a time-varying MF. Although magnetophosphenes are the most robustly exposure-related established effect, the perception threshold at power frequencies (50 and 60 Hz) remains uncertain, since it is based on extrapolated estimates from non-replicated experimental data acquired at lower frequencies. The threshold for magnetophosphene perception is estimated to be lowest at 20 Hz (between 5 and 10 mT - 50 to 100 mV/m of induced E-field – 10 to 14 mAm² of induced current density) and then to increase with frequency [1-9]. The main aim of this project is to experimentally test the magnetophosphene detection threshold in humans exposed to MF flux densities between 0 and 50 mT at 50 and 60 Hz. The electroencephalographic (EEG) responses will also be investigated.

METHODS

Experiment (ethics: HSREB 18882):
- Protocol: 0-50 mT incremental protocol (5 mT steps x 5 replications each - 5s rest in between), given at 50 Hz (n=25) and 60 Hz (n=26), 2 local (eyeball and occipital) and 1 global head exposure conditions. Subject sitting in an armchair at rest, eyes closed in the dark.
- Endpoints: Magnetophosphene perception (button press) and simultaneous EEG recordings (classical frequency analysis - O1, O2, OZ).

RESULTS

Occipital cortex, right eyeball and entire head sequentially exposed between 0 and 50 mT, 50 and 60 Hz (5s each x 5 repetitions): magnetophosphene perception systematically reported by button press (Figure 3).

Discussion - Conclusion

- Occipital exposure: No direct magnetophosphene perception – indication of possible perception at 50 mT but likely due to the residual field at the retina.
- Magnetophosphene perception results from retinal exposure
- Hypothesis: effect on the graded potential of rods need to test different frequencies, field orientations
- Lowest threshold for magnetophosphene perception: 15 mT at power frequency
- Description: stroboscopic/flickering white light, periphery of the visual field (bottom left in retinal, all the periphery and brighter in global). Sometimes described as vibrations and reports of line patterns [7]
- Differential responses at 50 and 60 Hz
- Objective neurophysiological marker: EEG Alpha waves decreasing with higher flux densities (predicted in [8])

Acknowledgments

The authors acknowledge Lynn Keenliside for the development and construction of the local and global exposure headcoils, and Chris Vandelaar from Western University Machine Services for the development and construction of the motorized coil support. These projects are supported by industry-matched grants from Hydro-Québec, Électricité de France, Réseau de Transport d’Électricité and the Canadian Institutes of Health Research, with the additional support of the EPRI, NationalGrid and ENA. The equipment is partially funded by the Canada Foundation for Innovation.

References
[1] ICNIRP, Health Phys., 2010